Increase of mass in the gravitational field

Mohammadreza Tabatabaei

contact@ki2100.net

As we know, force multiplied by distance equals energy:

$$
\mathrm{E}=\mathrm{F} . \mathrm{d}
$$

E represents energy; \mathbf{F} represents force and considers \mathbf{d} as distance. Also the gravitational force between two masses is calculated by the following equation:

$$
F=\frac{G M m}{r^{2}}
$$

Where \mathbf{G} equals to the global constant of gravity and \mathbf{M} is the first mass (celestial substance) and \mathbf{m} represents the second mass of a material and \mathbf{r} is the distance between two centers. So gravitational potential energy obtain by following ways:

$$
\begin{aligned}
& E=F \times d \\
& d=r \Rightarrow E=F \times r \Rightarrow F=\frac{E}{r} \\
& \frac{E}{r}=\frac{G M m}{r^{2}} \Rightarrow E=\frac{G M m}{r}=U
\end{aligned}
$$

\mathbf{U} represents gravitational potential energy that equals and equivalent to the corresponding mass and it will increase to the mass. Now we calculate the mass amount:

$$
\begin{aligned}
& U=\frac{G M m_{0}}{r} \\
& E=m c^{2} \\
& E=U \\
& \Delta m=\frac{E}{c^{2}}=\frac{U}{c^{2}}=\frac{\frac{G M m_{0}}{r}}{c^{2}}=\frac{G M m_{0}}{r c^{2}} \\
& m=m_{0}+\Delta m=m_{0}+\frac{G M m_{0}}{r c^{2}} \\
& m=\frac{m_{0} r c^{2}+G M m_{0}}{r c^{2}}=\frac{m_{0}\left(r c^{2}+G M\right)}{r c^{2}}
\end{aligned}
$$

\mathbf{m}_{0} is the initial mass of a material, \mathbf{c} is the speed of light, $\Delta \mathbf{m}$ is increase in mass of a material in gravitational field and \mathbf{m} is the final mass of a material in the gravitational field. Hence, we calculate 1 kg mass of a material in the sun surface:

$$
m=\frac{m_{0}\left(r c^{2}+G M\right)}{r c^{2}}=\frac{1 \times\left(6.96 \times 10^{8} \times 9 \times 10^{16}+6.672 \times 10^{-11} \times 1.99 \times 10^{30}\right)}{6.96 \times 10^{8} \times 9 \times 10^{16}}=1.00000212
$$

